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ABSTRACT
Social bots have been around since 2008, and thus, they have been
polluting our online spaces for over a decade. Social bots are capa-
ble of swaying political opinion, spreading false information, and
recruiting for terrorist organizations. Social bots use various so-
phisticated techniques by adopting emotions, sympathy following,
synchronous deletions, and profile molting.

There are several approaches proposed in the literature for de-
tecting, exploring, and measuring of social bots. We provide a com-
prehensive overview of the existing work from the data mining
and machine learning perspective, discuss relative strengths and
weaknesses of various methods, make recommendations for re-
searchers and practitioners, and propose novel directions for future
research in taming social bots. This tutorial also discusses pitfalls
in collecting and sharing data on social bots.
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1 TOPIC OVERVIEW
The massive changes in our lives wrought by social media are well-
known. Thanks to services like Twitter, Facebook, and Instagram,
we can now interact in ways that would have sounded like science
fiction thirty years ago. With these new platforms come new ways
to abuse them. From viral marketing schemes to spreading fake
news (e.g. the Pizzagate conspiracy theory), social media is full of
people looking to misuse the connections it creates.

Bots, automated accounts run by computer programs, are a note-
worthy way of abusing social media. Bots are quick to construct,
almost free, and increasingly common [10]. Based on our research,
a Twitter bot can be constructed with about 30 seconds of work
and requires negligible resources to run. There are as many as 49.2
million bots on Twitter [22], a number that grows continuously. Al-
though they can have benign uses, bots are also used to spread false
information [16], pump up stock prices [8], harass the opponents of
authoritarian regimes, and recruit for terrorist organizations [14].

There are currently research centered around detecting bots
[24][15][20][6]. Technologies like DeBot [4] and BotOrNot [9] are
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good at finding certain types, with DeBot specializing in detect-
ing swarms of synchronous bots [3] and BotOrNot specializing
in English language bots. There has been research on exploration
techniques to improve the recall rate of initial detection systems
[18][19]. There has been research on understanding bot behavior
[12][23][5][13][17] and their impact on social and political events
under various geographical [21][11][2], cultural, financial [8], be-
havioral [12] and social [7] contexts as well. Tutorial slides are
available here [1].

2 COVERAGE
The topics covered in this tutorial have been published in KDD,
ICDM, WWW, ASONAM, ICWSM and WSDM conferences in the
past. Several of the papers we cover in this tutorial have won best
paper awards, and received large number of citations in a short
time. Data mining conferences always host at least one dedicated
session on security issues in social media and several sessions on
social media mining, in general. CIKM has had tutorials on social
media mining, for example “Malware Analysis for Data Scientists”
presented by Charles Nicholas in CIKM 2017. However, there has
not been a tutorial on social bots, despite their prevalence. We think
the following three categories of people will be interested.

Data mining/Database researchers: Researchers and those
working on specific social media mining problems will find the
tutorial informative.Wewill have a collection of pointers to publicly
available datasets and online tools. Also, as the tutorial ends with
a discussion of open problems to work on in the area, graduate
students looking for an interesting problem in a hot area will be
well-served.

Data mining/Database educators: Professors who teach cy-
bersecurity and data mining can gain benefit from this tutorial’s
slides. Such individuals will receive our comprehensive (and modi-
fiable) slides and observe our presentation of them. They will be
able to base 10 to 20 hours of graduate instruction on the tutorial.

Datamining/Database application developers: These devel-
opers will learn the latest techniques for mining streaming data (e.g.
tweets) and see examples of how the techniques fit into real-life
applications (e.g. bot detection). They will also find the collection
of code readable and useful once the algorithms are understood.
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